Enable Digital Phenotyping with Garmin Devices in Your Longitudinal Research Studies

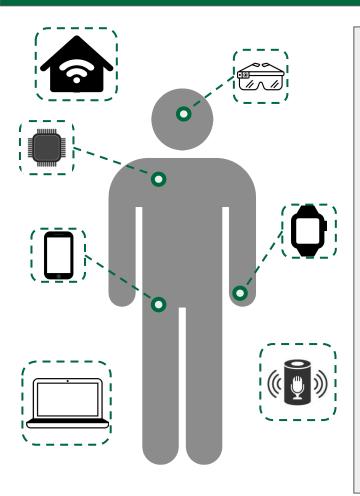
Varun Mishra

Assistant Professor Khoury College of Computer Science & Bouvé College of Health Sciences Northeastern University <u>v.mishra@northeastern.edu</u>

Nicholas Jacobson

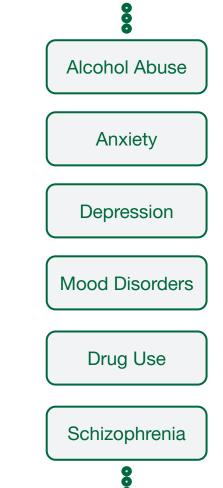
Assistant Professor Biomedical Data Science Geisel School of Medicine, Dartmouth College <u>nicholas.c.jacobson@dartmouth.edu</u>

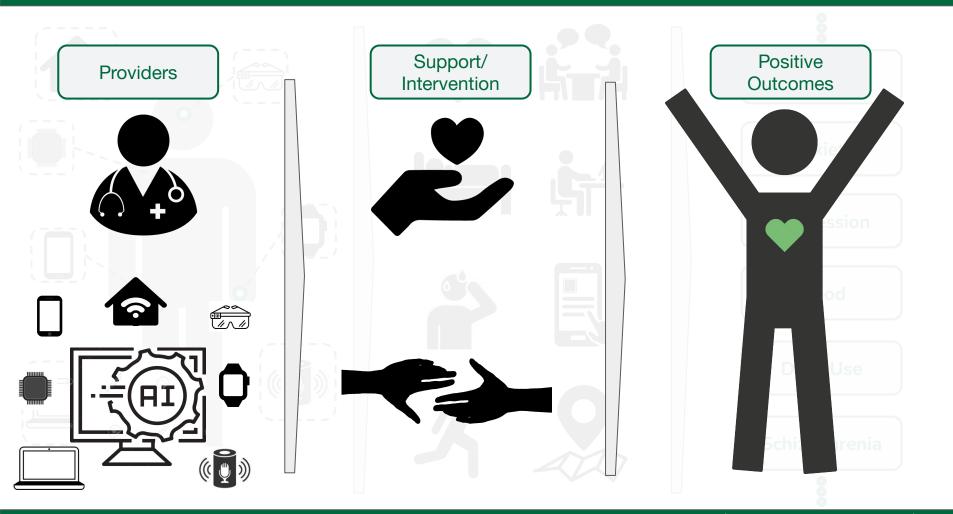
CTBH March 5, 2024

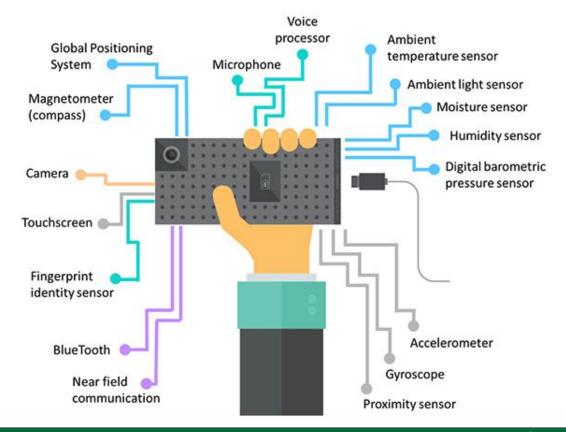


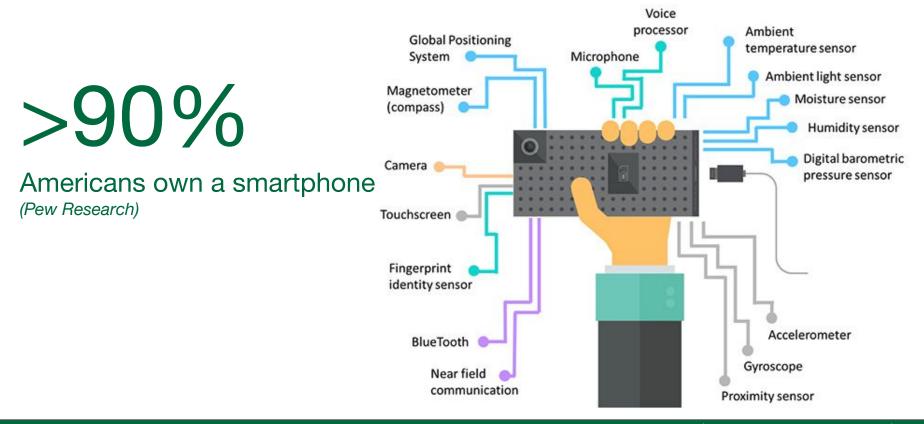
Agenda

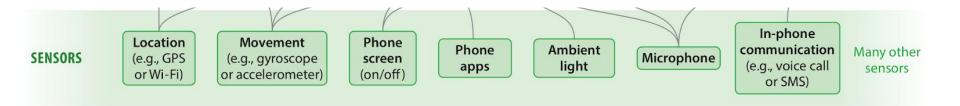
- The promise of Digital Phenotyping
- Why consider wearables for your research?
- Which wearables to use and why?
- Garmin Health API
- Garmin Health Companion SDK
- Options for "low-burden" access
- Hearing from Garmin representative about latest updates
- Open discussion and QnA

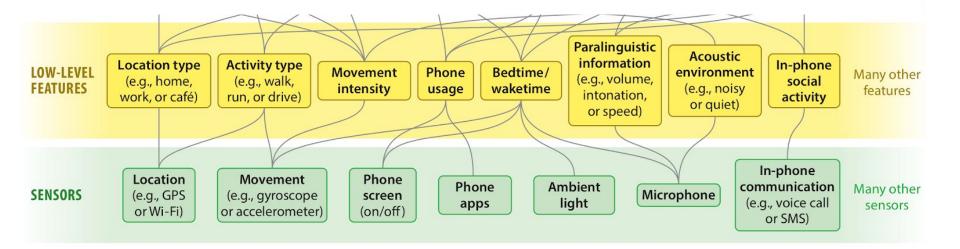


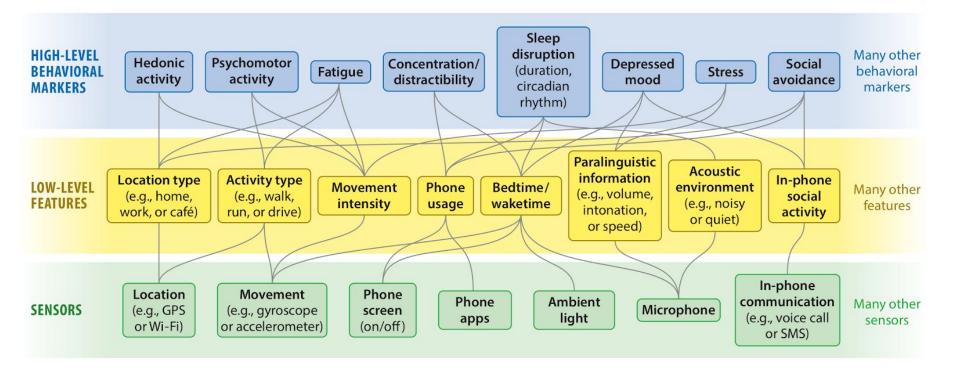


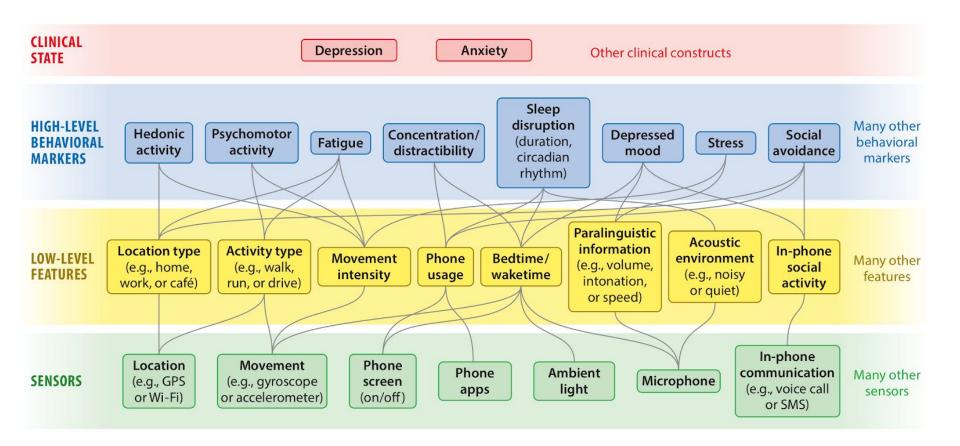



Evolution of "smart-" phones

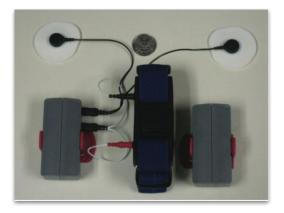



Sensors everywhere!




Sensors everywhere!

The rise of wearables


- Thergraincomovement
 Kettersleepclessification
- Americansi regulianyalise a smartwatchte
 - Heart-rate variability
 - Electrodermal Activity
 - Respiration
 - Skin temperature

"Research-grade" wearables

And the second s

AutoSense Custom Sensing System Zephyr Bioharness

Empatica E4

Empatica EmbracePlus

"Research-grade" wearables

S.j.

Ventral EDA sensor (Electrodermal activity)

Detects subtle changes in electrical conductance at the surface of the skin

Advanced optical PPG (Photoplethysmogram) Clinically validated PR and PRV measurements through a custommade sensor

Digital skin temperature Reads peripheral skin temperature

Accelerometer and Gyroscope Raw accelerometry data and motion intensity detection

Empatica EmbracePlus

Consumer Wearables

Apple Watch

Fitbit

Garmin

Good Morning Riley!

6:15

Google

Whoop

100% 📖

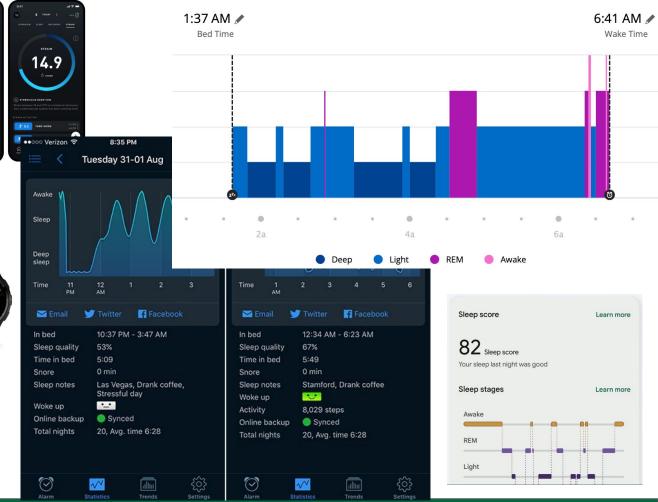
Run

Rike

Activities App

1.6

MEDIUM STRESS


BODY BATTERY" ENERGY MONITORING SLEEP COACH

MORNING REPORT

HRV STATUS

Varun Mishra

Consumer Wearables

Apple Watch

- Sleep Stage detection
- Heart-rate & HRV
- User-initiated ECG
- Activity metrics: steps, distance, intensity
- Respiration rate

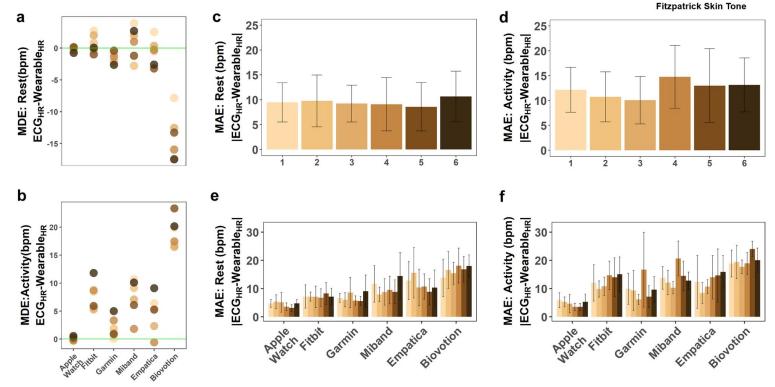
Fitbit

- Sleep Stage detection
- Heart-rate & HRV
- User-initiated ECG
- Activity metrics: steps, distance, intensity
- Respiration rate

Garmin

- Sleep Stage detection
- Heart-rate & HRV
- User-initiated ECG
- Activity metrics: steps, distance, intensity
- Respiration rate
- Pulse ox

Google/Android


- Sleep Stage detection
- Heart-rate & HRV
- User-initiated ECG
- Activity metrics: steps, distance, intensity
- Respiration rate
- Electrodermal Activity (EDA)

Whoop

- Sleep Stage detection
- Heart-rate & HRV
- User-initiated ECG
- Activity metrics: steps, distance, intensity
- Respiration rate

Differences in Signal Quality

Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ digital medicine. 2020 Feb 10;3(1):18.

5 6

2 3

1

Data Access

Apple Watch

- Aggregated summaries
- Some raw signals, continuously
- iPhone only
- Programming heavy

Fitbit

- Aggregated summaries (minute, hour, day)
- Heart-rate every 15 seconds
- API Available

273 275/63 Cod Marnige R8 6: 105 Sut D1 Coart

Garmin

- Aggregated summaries (minute, hour, day)
- Also provides access to real-time raw signals
- API for aggregations
- SDK for raw signals

Google/Android

- Aggregated summaries, through fitbit API

- Raw signals available
- Android only
- Programming heavy

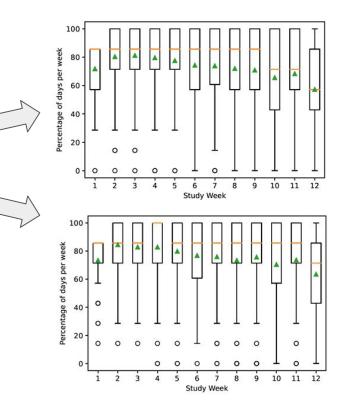
WHOOP

Whoop

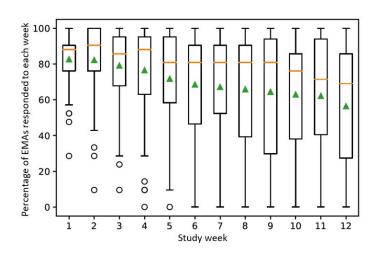
- Aggregated summaries through API

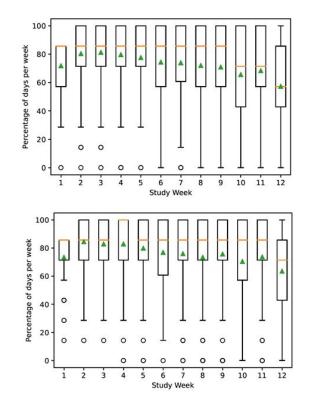
Current best choice: Garmin

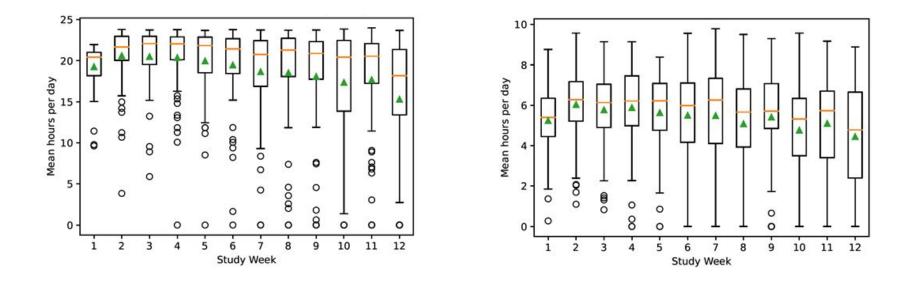
- Different form factors
- Price starting from \$150 to over \$800
- Outstanding battery life!
- Access to biomarkers calculated by Garmin
- Access to raw data to develop new algorithms
- Garmin seems to be committed to Digital Health
- Third-party vendors for data collection:
 LabFront, Fitabase, Fitrockr



Compliance with Garmin Watch from OUD Study


- Phone carry criteria met 94% of the days
- Watch wear criteria met 74% of the days.
- Wore watch to sleep 77% of

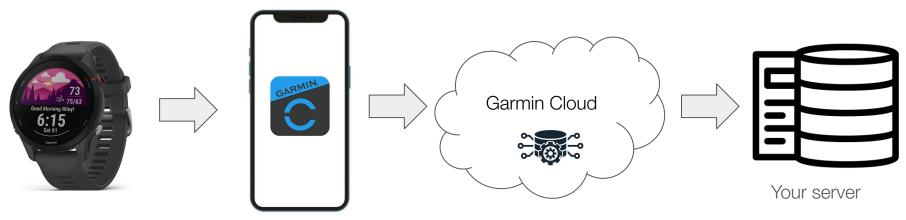

the days.



EMA vs Garmin from OUD Study

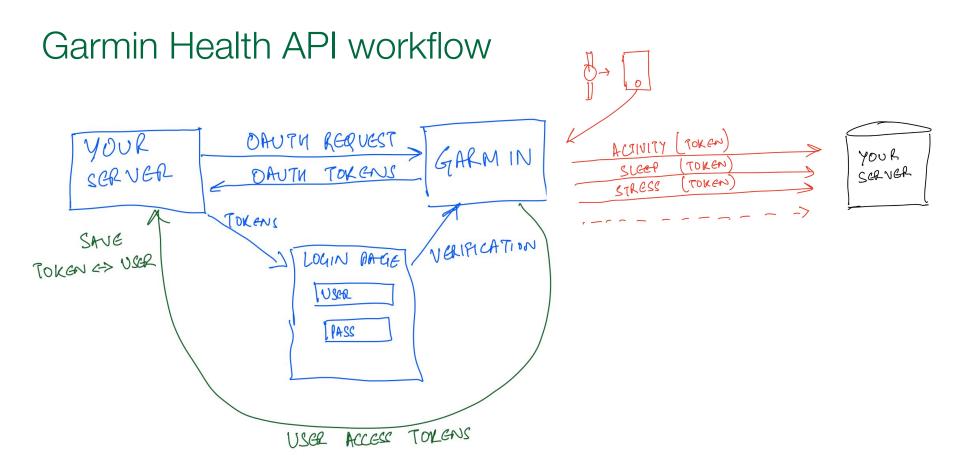
Hours of Garmin data from OUD Study

We have observed similar compliance in other studies too


Accessing Garmin Data

- Garmin Health API:
 - Access to all-day metrics, such as sleep stages, heart-rate, steps, etc.
 - Doesn't require any phone programming
 - Uses Garmin's standard/proprietary algorithms for various biomarkers: stress prediction, step count, sleep stage detection, calories burnt, etc.
- Garmin Companion SDK
 - Access to raw sensor streams: accelerometer, IBI (inter-beat interval), respiration rate, etc.
 - Does require phone programming
 - Some metrics are through Garmin's algorithms, but you can use the raw data to develop your own algorithms.

Garmin Health API


- Garmin Health API:

- Access to all-day metrics, such as sleep stages, heart-rate, steps, etc.
- Doesn't require any phone programming
- Uses Garmin's standard/proprietary algorithms for various biomarkers: stress prediction, step count, sleep stage detection, calories burnt, etc.

Practical considerations for Health API

- Participants need to install the Garmin app on their phones
- The data will first go to Garmin's servers
- Garmin will run its algorithms and periodically push data to your server
- Garmin also allows a "pull" where your server can periodically request data from Garmin
- Requires some web development: you need to create endpoints for Garmin to push data to your server. But it's a one-time thing!
- You need to develop your own dashboard to visualize the data and track data collection and compliance.

Sample Data

"_id" : ObjectId("61035cd4128519b5a35f65c3"). "userId" : "5358293d-8c5a-4128-a7b7-cf92433a49c4". "userAccessToken" : "5b0ab665-5bec-4a2b-84ac-4608dfb51713", "summaryId" : "x32c5a4b-5f290770-15180", "startTimeInSeconds" : 1596524400. "startTimeOffsetInSeconds" : -25200. "durationInSeconds" : 86400, "calendarDate" : "2020-08-04". "timeOffsetStressLevelValues" : { "0" : 8, "180" : 6. "360" : 6, "540" : 8, "720" : 3. "900" : 3. "1080" : 7, "1260" : 17, "1440" : -2, "1620" : -1. "1800" : -1, "1980" : -Z, "2160" : -2. "2340" : -2. "2520" : -2. "2700" : -2, "2880" : -2, "3060" : -2, "3240" : -2. "3420" : -1, "3600" : -1, "3780" : -2. "3960" : -2. "4140" : 0. "4320" : 0, "4500" : 0, "4680" : 1, Stress "4860" : 1. "5040" : 4, "5220" : -2, "5400" : -2. "5580" : -1. "5760" : -1, "5940" : -1,

"6120" : 20.

"6300"

"_id" : ObjectId("5eeacaa2df52cdf9b342a3e8"), "userId" : "f316f36b-6603-4500-bb7e-eb641c75e71c". "userAccessToken" : "862abefd-b4d9-4fc7-997f-b46657671726", "summaryId" : "x3483cc3-5ee86df0-15180-6". "calendarDate" : "2020-06-16", "activityType" : "WALKING", "activeKilocalories" : 12, "bmrKilocalories" : 1966. "steps" : 224, "distanceInMeters" : 174. "durationInSeconds" : 86400. "activeTimeInSeconds" : 534. "startTimeInSeconds" : 1592290800, "startTimeOffsetInSeconds" : -25200 "moderateIntensityDurationInSeconds" : 0. "vigorousIntensityDurationInSeconds" : 0. "floorsClimbed" : 1, "minHeartRateInBeatsPerMinute" : 62, "maxHeartRateInBeatsPerMinute" : 99. "averageHeartRateInBeatsPerMinute" : 72, "restingHeartRateInBeatsPerMinute" : 65, "timeOffsetHeartRateSamples" : { "82395" : 74, "82410" : 74, "82425" : 74, "82440" 74. "82455" : 78. "82470" : 78, "82485" : 78, "82500" : 78. "82515" : 76, "82530" : 76. "82545" : 76, "82560" : 76, "82575" : 78, "82590" : 78, "82605" : 78. "82620" : 78, "82635" 80. "82650" : 80. "82665" : 80, "82680" 80. "82695" : 77. "82710" : 77, "82725" "82740" : 77. "82755" : 79, "82770" : 79. "82785" : 79, "82800" : 79, "82815" 84. "82830" : 84, Dailv "82845" : 84, "82860" 84. "82875" : 95, "82890" : 95, "82905" 95. "82920" : 95, "82935" : 91. "82950" : 91. "82965" : 91,

" id" : ObjectId("6102b9f2128519b5a3ba2963"), "userId" : "5358293d-8c5a-4128-a7b7-cf92433a49c4", "userAccessToken" : "5b0ab665-5bec-4a2b-84ac-4608dfb51713". "summaryId" : "x32c5a4b-5f29fa04-8", "activityType" : "SEDENTARY", "activeKilocalories" : 0. "steps" : 0, "distanceInMeters" : 0. "durationInSeconds" : 900, "activeTimeInSeconds" : 284. "startTimeInSeconds" : 1596586500, "startTimeOffsetInSeconds" : -25200. "met" : 1. "intensity" : "SEDENTARY". "meanMotionIntensity" : 0, "maxMotionIntensity" : 4, "uid" : "t01", "start_timestamp" : 1596586500, "activity_type" : "SEDENTARY" "_id" : ObjectId("6102b9f2128519b5a3ba2971"), "userId" : "5358293d-8c5a-4128-a7b7-cf92433a49c4". "userAccessToken" : "5b0ab665-5bec-4a2b-84ac-4608dfb51713", "summarvId" : "x32c5a4b-5f29fd88-6". "activityType" : "WALKING", "activeKilocalories" : 27, "steps" : 220, "distanceInMeters" : 171.32. "durationInSeconds" : 900, "activeTimeInSeconds" : 532, "startTimeInSeconds" : 1596587400, "startTimeOffsetInSeconds" : -25200. "met" : 3.2303977.

"met": 3.2303977, "intensity": ACTIVE", "meanMotionIntensity": 2, "maxMotionIntensity": 2, "uid": "t01", "start_timestamp": 1596587400, "activity_type": "MALKING"

" id" : ObjectId("6102b9f2128519b5a3ba297f"), "userId" : "5358293d-8c5a-4128-a7b7-cf92433a49c4". "userAccessToken" : "5b0ab665-5bec-4a2b-84ac-4608dfb51713", "summaryId" : "x32c5a4b-5f29fd88-0", "activityType" : "GENERIC", "activeKilocalories" : 8. "steps" : 0, "distanceInMeters" : 0, "durationInSeconds" : 900. Epochs Sleep? "activeTimeInSeconds" : 0, "startTimeInSeconds" : 1596587400 "startTimeOffsetInSeconds" : -25200, "met" : 1, "intensity" : "SEDENTARY", "meanMotionIntensity" : 0, "maxMotionIntensity" : 5, "uid" : "t01". "start timestamp" : 1596587400, "activity_type" : "GENERIC"

5 - 1 10 10

"_id" : ObjectId("Seecd8c1df52cdf9b352c836"), "userId" : "f316f36b-6603-4500-bb7e-eb641c75e71c". "userAccessToken" : "862abefd-b4d9-4fc7-997f-b46657671726", "summaryId" : "x3483cc3-5ee9bc28-6ae0", "calendarDate" : "2020-06-17", "durationInSeconds" : 27360. "startTimeInSeconds" : 1592376360, "startTimeOffsetInSeconds" : -25200 "unmeasurableSleepInSeconds" : 0. "deepSleepDurationInSeconds" : 11820. "lightSleepDurationInSeconds" : 15540. "remSleepInSeconds" : 0, "awakeDurationInSeconds" : 540. "sleepLevelsMap" : { "deep" : "startTimeInSeconds" : 1592377800. "endTimeInSeconds" : 1592378640 "startTimeInSeconds" : 1592382420, "endTimeInSeconds" : 1592383920 "startTimeInSeconds" : 1592384520, "endTimeInSeconds" : 1592385600 "startTimeInSeconds" : 1592385900 "endTimeInSeconds" : 1592386980 "startTimeInSeconds" : 1592389560, "endTimeInSeconds" : 1592390820 "startTimeInSeconds" : 1592393400 "endTimeInSeconds" : 1592394480 "startTimeInSeconds" : 1592395620. "endTimeInSeconds" : 1592398740 "startTimeInSeconds" : 1592400180. "endTimeInSeconds" : 1592402040 "startTimeInSeconds" : 1592376360. "endTimeInSeconds" : 1592377800 "startTimeInSeconds" : 1592378640. "endTimeInSeconds" : 1592379420 "startTimeInSeconds" : 1592379600 "endTimeInSeconds" : 1592382420 "startTimeInSeconds" : 1592383920, "endTimeInSeconds" : 1592384520

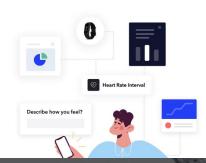
> "startTimeInSeconds" : 1592385600, "endTimeInSeconds" : 1592385900

Data Granularity

Activities, Steps, Intensity	Every 15 minutes (epochs)
Heart-rate	Every 15 seconds
Stress	Every 3 minutes
Body Battery	Every 3 minutes
Respiration	Every 60 seconds
Sleep	On Event
Pulse Ox	Every 60 seconds
Daily Summary	Daily

Low-burden start!

g in Get St


fitabase

RESOURCES \lor

Request a Demo Log In

All-in-one research solution for real-world data capture

Improved data collection, easier adherence management, and faster analysis - all aggregated in one easy-to-use research platform.

Deploy. Measure. Collect.

Fitabase supports innovative collection powering the next generation of health research.

Health Data Research & Healthcare Platform for Garmin Wearables

Easily synchronize Garmin wearables with access to high resolution physiological raw data, independent and secure hosting, survey and questionnaire responses, real-time data streams, health data reports and exports.

Analyze HE high resolution raw data.

Learn More

Secure Platform

Garmin Health Companion SDK

- Garmin Companion SDK
 - Access to raw sensor streams: accelerometer, IBI (inter-beat interval), respiration rate, etc.
 - Does require phone programming
 - Some metrics are through Garmin's algorithms, but you can use the raw data to develop your own algorithms.

Practical considerations for Companion SDK

- Create/install a custom app using Garmin SDK
- The app will pair with Garmin device and initialize the logging rules and configurations
- Data will be logged on Garmin devices and synced periodically with the app
- The app is responsible for storing the data and uploading to a server
- "Garmin Connect" app is not necessary, but can be used in parallel to collect the daily metrics, especially the sleep summaries.
- You need your own server to store all the data.
- Depending on the type of data and frequency, sizes could range from 200-500
 MB per day per person
- You need your own dashboard to track data collection and compliance

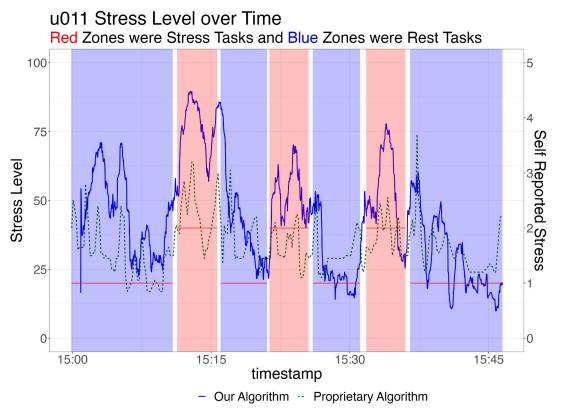
Why use the SDK over API?

ess") er biomarkers or free-living

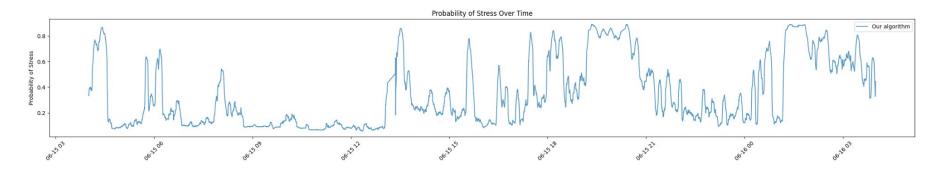
r Gyroscope

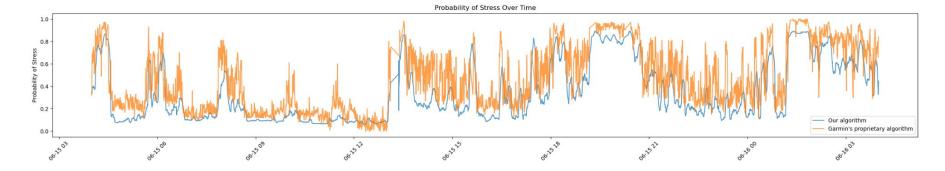
Data Granularity of the Companion SDK

Respiration, Pulse Ox	Every 10 seconds - 60 minutes
Heart-rate	Every 1 second - 60 minutes
Stress	Every 10 seconds - 60 minutes
Steps	Every 60 seconds
IBI	On Event
Actigraphy	Every 1 or 30 seconds - 60 minutes
Accelerometer	25 Hz
Gyroscope	32 Hz

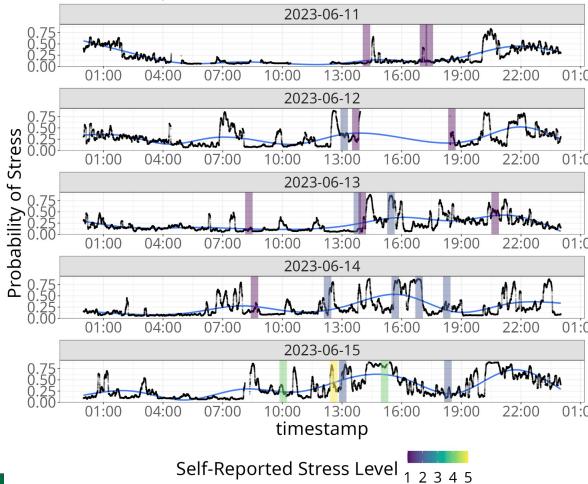

Think carefully about what sampling frequency

- Accelerometer and Gyroscope generate a lot of data!
 - Syncing 1 hour of accelerometer data from watch to phone takes 4.5 minutes
 - Syncing 1 hour of gyroscope data takes 6 minutes
- Can have real-impact on the data sizes, performance, and battery life of both the phone and the watch
- Example:
 - Garmin Forerunner 55: without ACC and Gyro, could last 9-11 days
 - With ACC: lasts 4-5 days

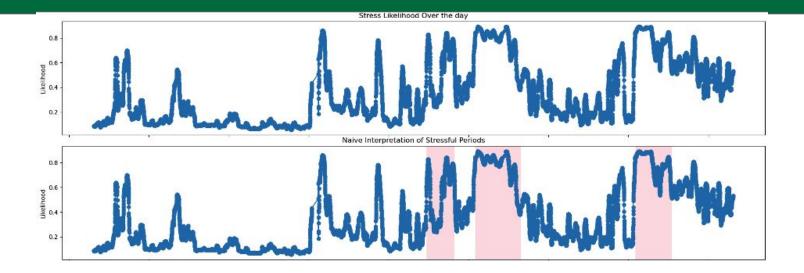

Reliability of IBI and calculated HRV metrics

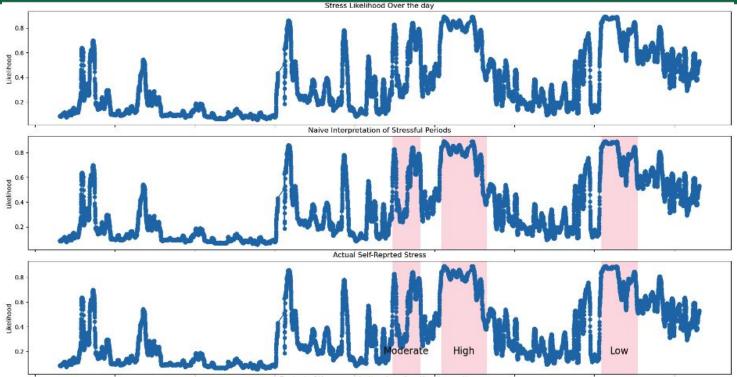

- In a lab study where participants underwent stress-induction tasks:
 - We used data from Garmin, Polar H10, and Empatica E4 to collect raw IBI/RR interval data
 - We used a pre-built stress predictor (from previous studies) to detect probability of "stress"
 - With careful data processing:
 - Garmin devices performed almost at-par with polar devices in all tasks
 - Garmin devices performed significantly better than Empatica E4 devices

What about Garmin's built-in "stress" measurement

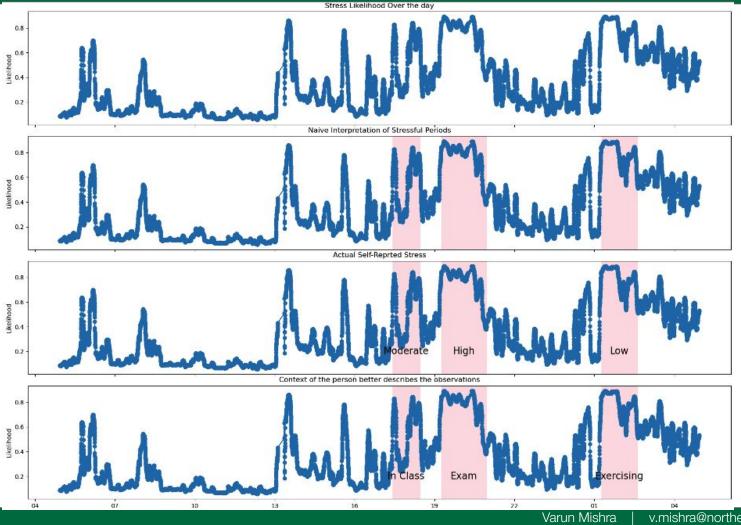


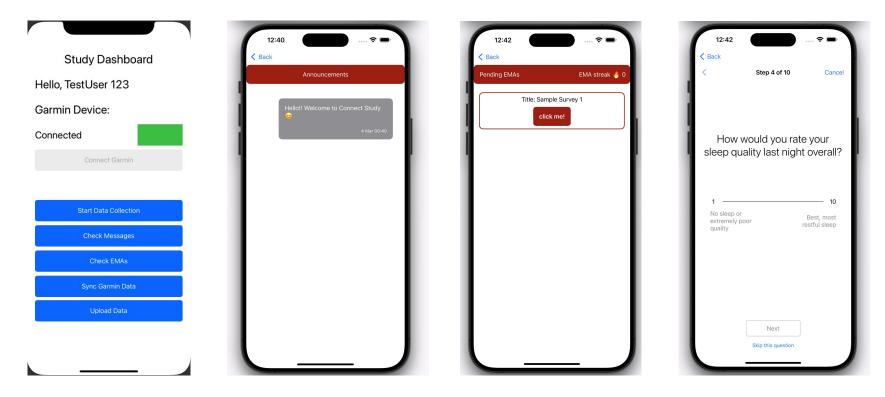
What about on a full-day?





Our algorithm also shows relationships with perceived stress Probability of Stress Over 5 Days for u014 with Self-Reported Stress Shown

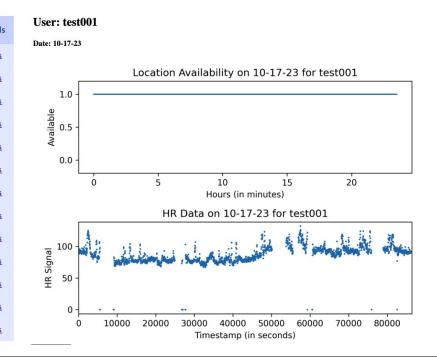



Contact of the nercen better describes the observations

How to use Companion SDK?

- Requires a license!
- At CTBH we are creating a generalized version of the app, that will enable Garmin data collection and EMAs.
- This will only be available internally to CTBH affiliates starting late summer.
- However, not a direct plug-n-play solution
 - You still need your own server for data collection
 - We will provide a basic server container with simple processing/dashboard code
 - Requires working closely/consulting with the ETDA and TDE cores

Screenshots of the App



Sample dashboard

Dashboard Summary 10-17-23

Next || Previous

User	MobileCoach ID	Phone Duration	Garmin wear Duration	Garmin on Duration	Details
u028	650b1311a1de18000e67b22a	23.916944444444443	18.966666666666665	18.9527777777778	<u>Details</u>
u029	650b6742a1de18000e67b55a	23.36555555555555	19.7083333333333332	19.7083333333333332	<u>Details</u>
u030	650cbcb9a1de18000e67b9ff	0.0	0.0	0.0	<u>Details</u>
u031	650cc48ea1de18000e67ba23	23.83305555555557	8.76666666666666	10.291666666666666	<u>Details</u>
u032	650db151a1de18000e67bb17	23.875	17.766666666666666	18.00833333333333333	<u>Details</u>
u033	650dfacba1de18000e67bc10	23.83361111111111	20.625	20.863888888888888	<u>Details</u>
u034	650e065ca1de18000e67bc59	21.93	15.0583333333333334	15.477777777777778	<u>Details</u>
u035	6511a609a1de18000e67c2a8	23.00055555555555	6.26666666666666	13.43055555555555555	<u>Details</u>
u036	651344dea1de18000e67c5f4	23.83305555555555	14.25	14.58611111111111	<u>Details</u>
u037	6514632da1de18000e67c7f6	0.0	0.0	0.0	<u>Details</u>
u038	6515dbcba1de18000ea4ceda	21.577222222222225	10.691666666666666	18.72777777777778	<u>Details</u>
u039	6516e393a1de18000ea4d23b	23.7497222222222	18.05833333333333334	18.269444444444446	<u>Details</u>
test001	647b6a2da1de18000cdb77c5	23.7502777777778	19.741666666666666	21.5222222222222222	<u>Details</u>

Low-burden start

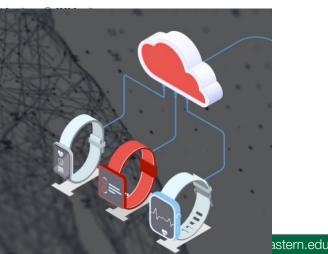
- LabFront
- Fitrockr
- Partnered directly with Garmin
- HIPAA, GDPR compliant.

Health Data Research & Healthcare Platform for Garmin Wearables

Easily synchronize Garmin wearables with access to high resolution physiological raw data, independent and secure hosting, survey and questionnaire responses, real-time data streams, health data reports and exports.

Analyze **HE** high resolution raw data.

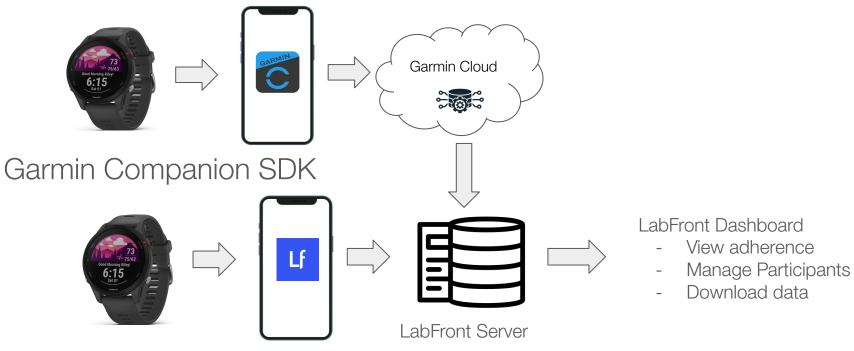
Learn More


Secure Platform

All-in-one research solution for real-world data capture

Improved data collection, easier adherence management, and faster analysis - all aggregated in one easy-to-use research platform.

Start for free	► Watch Video
----------------	---------------



47

Using LabFront

-

- Garmin Health API

Varun Mishra | v.mishra@northeastern.edu | 48

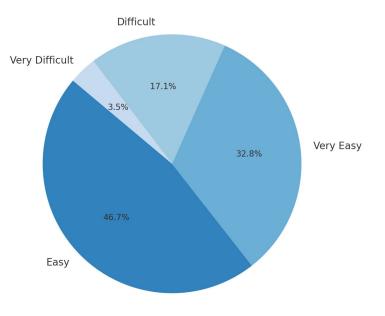

Let's hear from Garmin!

- Jesse Blackstock from Garmin Health

https://www.youtube.com/watch?v=bj5aU1QCgLQ

Experiences and Challenges with Garmin wearables for Digital Phenotyping

Would you have preferred a different size watch?

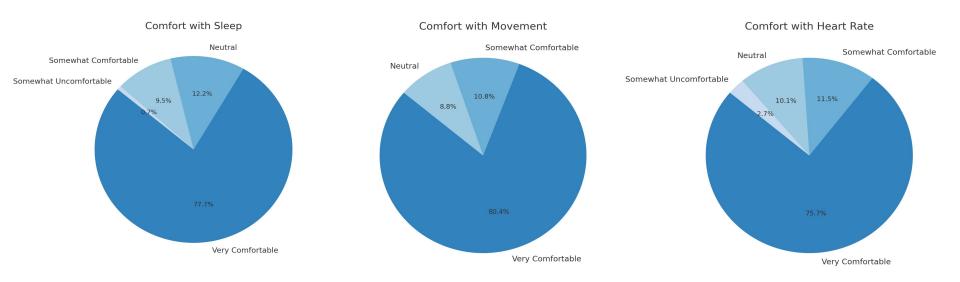


Device Charging

How difficult was it to keep the Garmin watch charged and on you throughout the study?

Some participants report that it's difficult to keep the device charged

The rate of difficulty is about 5% higher than just keeping one's phone charged


Participant Feedback

Mixed view on Garmin notifications

- Most participants found it annoying and too loud
- We disabled all notifications
- Some people wanted to be notified when their phone received the notification
- Some participant training (or basic "how to") would enhance participant experience

Privacy Concerns: Not an Issue

Technical Concerns: Garmin SDK - Expiring

Most Garmin SDK keys come with an expiration

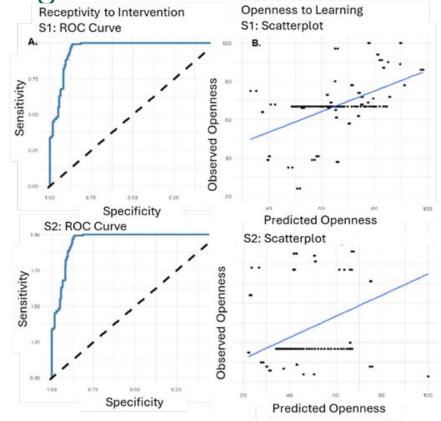
Participants needed to restart their phones

Labfront

Participants needed to keep Labfront open to upload the data

Maybe a configuration issue on our end? - but research coordinator couldn't figure this out

Examples of Research Based on Garmin Devices


Interim Analyses: Research Using Garmin Devices

Pilot study - predicting momentary receptivity

 $R^2 = 0.407$ to predict openness to learning

Receptivity to intervention: AUC = 0.878

Interim Analyses: Future Weekly Variation in Depressive Symptoms Based on Movement Data Alone

Sample of persons with MDD (N =177) - predicting variation in depressive symptoms based on 270 ecological momentary assessments per person

Performance Metric	Test Set Mean ± S.D.	Validation Set(s) Mean ± S.D.
AUC	0.59 ± 0.06	0.64 ± 0.02 o
Sensitivity	0.56 ± 0.21	0.57 ± 0.10
Specificity	0.59 ± 0.23	0.68 ± 0.12
Accuracy	0.59 ± 0.18	0.66 ± 0.09 _P
Kappa	0.09 ± 0.09	0.15 ± 0.05
F1 Score	0.26 ± 0.07	0.31 ± 0.04